
Tokeneer: Beyond Formal Program Verification

Yannick Moy1, Angela Wallenburg2

1: AdaCore, 46 rue d’Amsterdam, F-75009 Paris (France),
yannick.moy@adacore.com

2: Altran Praxis, 20 Manvers Street, Bath BA1 1PX (United Kingdom),
angela.wallenburg@altran-praxis.com

Abstract Tokeneer is a small-sized (10 kloc) security
system which was formally developed and verified by
Praxis at the request of NSA, using SPARK technol-
ogy. Since its open-source release in 2008, only two
problems were found, one by static analysis, one by
code review. In this paper, we report on experiments
where we systematically applied various static analy-
sis tools (compiler, bug-finder, proof tools) and focused
code reviews to all of the SPARK code (formally veri-
fied) and supporting Ada code (not formally verified)
of the Tokeneer Project. We found 20 new problems
overall, half of which are defects that could lead to a
system failure should the system be used in its current
state. Only two defects were found in SPARK code,
which confirms the benefits of applying formal verifi-
cation to reach higher levels of assurance. In order to
leverage these benefits to code that is was not formally
verified from the start, we propose to associate static
analyses and dynamic analyses around a common ex-
pression of properties and constraints. This is the goal
of starting project Hi-Lite, which involves AdaCore and
Altran Praxis together with several industrial users and
research labs.

Keywords System formal development, Verification
and validation, Certification and dependability

1 Introduction

Formal verification consists of the application of math-
ematical techniques to verify properties of systems.
Formal program verification targets systems at the
level of source programs, where the semantics of the
programming language chosen gives a precise mean-
ing to the programs analyzed. Frameworks for formal
program verification, such as the SPARK framework
that we develop and promote at Altran Praxis and Ada-
Core, rest upon two crucial features: powerful software
tools that automate most of the reasoning and fine-
grain interactions with users through the manual spec-
ification of program properties.

Formal verification is desirable for critical systems and
has been shown to be practically feasible. In the Toke-
neer Project [1, 4] initiated by the NSA, Praxis devel-

oped a small-sized security system using formal verifi-
cation methods and showed that it reached the higher
assurance levels of the Common Criteria. Since the
open-source release of the project [6], very few prob-
lems have been found in the system, despite scrutiny
of research teams and individual security experts.

Still, two problems were found prior to the work we re-
port here, and we found many more issues during this
work. It may seem unintuitive that a formally verified
system can contain problems. There are several rea-
sons for why problems can be present in a formally
verified system:

1. Formal verification is not applied to all parts of a sys-
tem. Around a formally verified core, there are usu-
ally parts of the system that cannot be verified for-
mally, because they deal with interfacing with other
systems or a user, or because it would be too costly
to verify them (effort/time/money). The cost/benefit
ratio of formal verification is particularly important to
take into account for those less critical parts.

2. Formal verification is only as strong as the specifica-
tion is. When formally verifying the absence of run-
time errors in programs, the specification is given by
the semantics of the programming language. How-
ever, in general there is no way to “guess” the in-
tended meaning of some part of a system, but the
developer has to indicate it in a specification. Writ-
ing specifications can be as error-prone as writing
programs. In practice, these specifications are not
complete functional specifications, as this would be
much too costly. Only the properties that a developer
specified can be formally verified.

3. Formal verification techniques do not target all de-
sirable properties of programs. Most formal verifica-
tion frameworks verify the absence of run-time er-
rors, and properties expressed by developers as in-
variants or function contracts. In particular, formal
verification techniques are not usually good at de-
tecting dead code and “strange” code (inefficient or
unidiomatic code), or covert channels.

4. The formal verification method itself may be flawed,
for example if the implementation of the underlying
theorem prover or static analyzer contains problems.

1

In this paper, we examine in detail the problems that
we found in Tokeneer since its delivery. We are inter-
ested here in why they were not found by formal veri-
fication (or testing, or code review), and how they can
be found. We show that they can be found by a com-
bination of code review directed at the “blind spots” of
formal verification and improved tools or new tools that
we present in this paper. This is the reason for our
bold claim to go beyond formal program verification.
Of course, formal program verification will always be a
very sought-after goal. Here, we show how it can be
complemented by other techniques.

We start in Section 2 with a presentation of the To-
keneer Project and we describe the associated formal
verification effort. In Section 3, we describe the setup
of our experiments to find problems in the SPARK and
Ada code of the Tokeneer Project by static analysis
and code review. We report the results of these exper-
iments in Sections 4 and 5 as a list of defects and code
quality issues that were found. We summarize and dis-
cuss these results in Section 6, before we describe in
Section 7 how a new project, Hi-Lite, addresses the
problem of associating formal verification with other
techniques. Finally, we conclude in Section 8.

2 Tokeneer - A Successful Formal Verification
Project

The Tokeneer Project was initiated by the NSA (Na-
tional Security Agency) to demonstrate that developing
highly secure systems to the level of rigor required by
the higher assurance levels of the Common Criteria [3]
was possible. The NSA asked Praxis to develop part
of an existing secure system (the Tokeneer System,
a biometrics identification station) in accordance with
Praxis’ own Correctness by Construction development
process [2].

This development and research work was completed
in 2003 and made publicly available by the NSA and
Praxis in October 2008, including the source code
for the application. The overall development took 12
person-months. Source code is written in SPARK for
the core (9939 lines of code + 6036 lines for data and
flow annotations + 1999 lines for proof annotations)
and Ada for the interfaces and drivers (3697 lines of
code). SPARK is both a subset of Ada and a specifica-
tion language that allows the expression of many pro-
gram properties. The SPARK framework is based on
powerful tools for automatically verifying most of these
properties. Ada is a programming language heavily
used for the development of critical applications, partly
thanks to its intrinsic specification features, but there
are no verification tools for Ada that compare to those
which exist for SPARK.

The development process adopted by Praxis consists
of a well-designed workflow from System Requirement

Specification to Formal Specification to Formal De-
sign to INFORMED Design to SPARK implementation.
Here, we only consider the final result of this devel-
opment process, which is the SPARK implementation,
as well as the supporting Ada code. The assurance
process adopted by Praxis consists of activities both
at the specification and at the coding levels. The lat-
ter consists of testing, static analysis and formal proof
activities. The static analysis was carried out auto-
matically by SPARK Examiner which ensured that all
of the SPARK code in Tokeneer respected data-flow
properties and information-flow properties (as well as
ensuring that all data is initialized before use). The for-
mal proof activities were carried out automatically by
SPARK Simplifier for a large part (93% of Verification
Conditions, a.k.a. VCs) and by a user in the remain-
ing cases (2% of VCs for which the user writes a proof
script which is checked automatically by a SPARK tool
called the Proof Checker and 5% of VCs manually re-
viewed) which ensured that all of the SPARK code in
Tokeneer was free from run-time errors and that it re-
spected the security properties specified. The two se-
curity properties verified were expressed as function
contracts: 1) the property that the guard must have
performed an “override lock” operation for the door to
be unlocked; 2) the property that the alarm should be
raised whenever the door is in an insecure state.

Here is an excerpt of a SPARK contract for procedure
EnrolOp which progresses enrolment of a user with the
biometric station:

1 procedure EnrolOp ;
2 −−# global in State ;
3 −−# in out KeyStore . State ;
4 −−# derives KeyStore . State from State ,
5 −−# KeyStore . State ;
6 −−# pre Enro lment Is InProgress (State) and not
7 −−# Pr ivateKeyPresent (KeyStore . State) ;
8 −−# post PrivateKeyPresent (KeyStore . State) <−>
9 −−# not Enro lment Is InProgress (State) ;

The data-flow part of this contract (introduced by the
keyword global) expresses that the effects of call-
ing EnrolOp depends on the values of global vari-
ables State and KeyStore.State, and that EnrolOp may
change the value of KeyStore.State. The information-
flow part of this contract (introduced by derives) ex-
presses that the value of KeyStore.State when the pro-
cedure returns depends on the input values of both
State and KeyStore.State. The precondition part of
this contract (introduced by pre) expresses that En-
rolOp should only be called in a context where en-
rolment is in progress and the key used is new. The
postcondition part of this contract (introduced by post)
expresses that when EnrolOp returns, either the key
has been accepted and the enrolment is terminated,
or the key has not been accepted and the enrolment is
still in progress.

Besides formal verification, reviews were applied at all

2

levels of the development process, including reviews of
the SPARK code against Formal Design, INFORMED
Design and Coding Standard. The system was also
tested independently by a different group in another
company, SPRE.

At the time the project was made public in 2008, zero
problems had been found by the customer post deliv-
ery.

3 The Tokeneer Project under Scrutiny

Since the open-source release of the Tokeneer
Project, its source code has been under the scrutiny of
research teams and individual security experts, which
resulted in the discovery of two problems prior to this
work. We report here on these problems and on the
several more that we have found by applying static
analysis and code review on both the SPARK code and
its supporting Ada code. We could not apply testing
techniques (in particular coverage techniques) as the
testing material (user interfaces and test-suite) was not
available. It was developed by SPRE, not Praxis, and
not released as open-source.

3.1 Experimental Setup for Static Analysis

We have applied the different tools developed at Ada-
Core and Praxis to the static analysis of either SPARK
code or both Ada and SPARK code:

• The GNAT compiler for Ada (and SPARK), which is-
sues simple warnings related to data flow;

• The static analyzer CodePeer, which performs a
deep analysis of Ada (and SPARK) code to infer con-
tracts and detect various kinds of errors (run-time er-
rors, logic errors, concurrency errors);

• SPARK Examiner, SPARK Simplifier and SPARK
Dead Path Analyzer (only for SPARK). SPARK Ex-
aminer performs in-depth data-flow and information-
flow analysis. SPARK Simplifier proves by deduc-
tion that the code is free from certain classes of run-
time errors and that the code meets its specifica-
tion. SPARK Dead Path Analyzer is a new SPARK
tool that finds paths that will never be run regardless
of program inputs. Code that only has dead paths
through it is dead code.

In particular, we applied here the latest versions of the
GNAT compiler and SPARK tools which have extended
verification capabilities compared to the versions used
during the development of the Tokeneer Project in
2003. We used GNAT Pro 6.3.2 (with option -gnatwa),
CodePeer 1.1 and SPARK Pro 9.0 (which includes
SPARK Examiner, SPARK Simplifier and SPARK Dead
Path Analyzer). The tools used during the Tokeneer
Project development were GNAT 3.15p and SPARK
7.0.

Only a straightforward setup was needed to run any
of the tools. In an attempt to get more precise rank-
ing results with CodePeer (more true problems), we
manually translated all SPARK preconditions and post-
conditions into the equivalent GNAT Precondition and
Postcondition pragmas, which took half a day. These
pragmas define contracts as Boolean expressions that
should be verified at run-time. Both GNAT and Code-
Peer correctly treat these executable contracts. The
results were quite unexpected: we did not get more
precise ranking results, but CodePeer detected instead
various redundant conjuncts in the Boolean formulas
used for annotations. Since these experiments, we
have disabled the generation of such redundant con-
juncts in preconditions and postconditions, as they
rarely point to real errors on usual programs. In the fol-
lowing, we refer to running CodePeer in special mode
when the problem was found due to this feature. For
each problem found by static analysis, we report the
output of the tool that indicated a possible error, in or-
der for the reader to judge for himself or herself the
usability of these messages.

The run-time for these experiments was quite small: on
an x86-64 box with two Intel Core 2 Duo CPUs (4 cores
total) at 2.93GHz and 4 GB RAM running Ubuntu 9.10,
compiling takes 2.6s, running SPARK Examiner takes
8.9s, running SPARK Simplifier takes 32s, and running
SPARK Dead Path Analyzer takes 3mn 28s. Run-time
for CodePeer depends on the mode in which it is used,
which dictates mostly the number of partitions in which
the code is split and separately analyzed. CodePeer
takes 1mn 27s in quick mode (6 partitions), 2mn 10s
in normal mode with partitions (3 partitions) and 17mn
15s in normal mode without partitions. Running Code-
Peer in quick mode was sufficient for all problems we
report in the following but one, which is only detected
by running CodePeer without partitions.

The time to review the results of each analysis was
very different for each tool. It was immediate to check
that SPARK Examiner did not issue error messages
and that all VCs were either proved automatically by
SPARK Simplifier or had a corresponding manual re-
view (a SPARK tool called POGS for Proof ObliGa-
tion Summarizer performs this check automatically).
It took a day to review the dead paths reported by
SPARK Dead Path Analyzer (154 dead paths in 22
subprograms). It took a few minutes to review the
compiler warnings (290 with option -gnatwa). It took
a day to review all the high and medium warnings is-
sued by CodePeer (84 in quick mode, 86 with parti-
tions, 174 without partitions). We only looked at very
few low warnings (80 in quick mode, 80 with partitions,
128 without partitions). The lower number of warnings
when running CodePeer with partitions is due to the
optimistic analysis of calls to functions across parti-
tions.

3

Overall, it took three days to apply the static analysis
tools and review the results.

3.2 Experimental Setup for Code Review

We decided to manually review three specific “blind
spots” of the SPARK verification tools:

• Parts of SPARK code inside a hide annotation, which
contain Ada code that does not fit in the SPARK sub-
set;

• Possible non-termination of loops, as SPARK does
not require that termination is proved;

• Handling of exceptions possibly raised by lower level
code in Ada, as SPARK does not know about excep-
tions.

Code reviews were performed inside an IDE, GNAT
Programming Studio, so as to benefit from the seman-
tic search facilities over all projects files, as well as se-
mantic navigation in the call-graph, def-use references,
etc.

We reviewed a total of 29 hide blocks, 13 while loops
(of which 5 in SPARK code), 10 infinite loops (of which
1 in SPARK code) and 101 exception handlers.

Overall, it took one day to apply code review.

3.3 Categories of Problems

We call defects all the problems that may lead to an
observable failure of the system to meet the require-
ments or the specification. We call code quality issues
all the problems that cannot currently lead to a sys-
tem failure, but that could lead to system failure during
maintenance. E.g., a sorting procedure that does not
sort in the appropriate order would be a defect, while a
sorting procedure called Remove Duplicates would be
a code quality issue. Note in particular that we consid-
ered dead code as code quality issues. Note also that
we assume that the formal proof activity is repeated
after maintenance changes. We made no effort at as-
sessing the severity of the problems, as the Tokeneer
Project is a prototype not meant to be used in reality.

In the following, we primarily present the results in
terms of the technique used (whether static analysis
or code review) and we distinguish defects and code
quality issues found in SPARK code from defects and
code quality issues found in Ada code. For some of
the issues reported we found multiple instances in the
code but we only report them once.

4 Results of Static Analysis

4.1 Defects Found in SPARK Code

Possible Integer Overflow: The first defect in SPARK
code was discovered by Rod Chapman, leader of the
SPARK team, while preparing the open-source release
of the Tokeneer material [6]. The SPARK tools from
2008 are more capable than the same tools were in
2003. In particular, producing proofs of absence of
overflow errors could not be justified in terms of time
and cost using the 2003 version of the SPARK tools.
By 2008 the degree of proof automation had improved
so much that arithmetic overflow checking had become
feasible, which led to the discovery of one overflow
problem.

The summary generated by POGS reported that a VC
corresponding to a run-time check at line 233 was
undischarged.

| 4 | start | rtc check @ 233 | Undischarged

It originated in the following lines from configdata.adb,
where an overflow could occur during the evaluation of
expression (RawDuration * 10) inside the test meant to
protect against another overflow.

233 i f Success and then
234 (RawDuration ∗ 10 <= In tege r (DurationT ’ Last) and
235 RawDuration ∗ 10 >= In tege r (DurationT ’ F i r s t))
236 then
237 Value := Durat ionT (RawDuration ∗ 10) ;
238 else

Wrong Variable Used: Running the GNAT compiler
with warnings revealed that a condition in a test was
known to be true.

keystore.adb:349:23: warning:
condition is always True (see test at line 344)

Indeed, the value of some variable RetValIni is tested
twice instead of testing the value of another variable
RetValDo the second time, which is typical of copy-
paste errors.

344 i f RetVa l I n i = I n t e r f a c e .Ok then
345 I n t e r f a c e . FindObjects
346 (HandleCount => HandleCount ,
347 ObjectHandles => Handles ,
348 ReturnValue => RetValDo) ;
349 i f RetVa l I n i = I n t e r f a c e .Ok then

This warning was not present in the version of the
compiler used during development of the Tokeneer
Project. This defect is also detected by CodePeer in
quick mode. Note that it is also detected by the new
SPARK Dead Path Analyzer in SPARK 9.0.

4

4.2 Code Quality Issues Found in SPARK Code

Dead Defensive Code: Running CodePeer in quick
mode revealed some dead code, i.e., code which may
never be executed in any run.

tokenreader.adb:683:19: warning:
dead code because CardState in Absent..Specific

It corresponds here to defensive code in the default
case of a case-statement. The reason for this code to
be dead is quite involved and spans multiple calls.

682 when I n t e r f a c e . Inva l i dCardS ta te =>
683 MarkTokenBad ;
684 end case ;

Global Used instead of Proxy: Running the GNAT
compiler with warnings revealed that a parameter in
a function was not used.

auditlog.adb:585:28: warning:
formal parameter "E" is not referenced

Had it been a regular SPARK function, SPARK Exam-
iner would have caught this error immediately, as all
function parameters in SPARK must be read at least
once. SPARK Examiner could not catch this error be-
cause the body of the function was hidden from SPARK
tools, using the hide annotation:

585 function NameOfType (E : AuditTypes . ElementT)
586 return ElementTextT
587 is
588 −−# hide NameOfType ;

The function’s body directly references the global vari-
able ElementID instead of its local name E, most prob-
ably because a local block of code was refactored into
a local function.

The corresponding warning flag from the compiler was
turned off during the development of the Tokeneer
Project. Although CodePeer does not issue a warn-
ing for this code quality issue, it correctly omits E from
the inputs it generates for function NameOfType.

Redundant Conjunct in Precondition: As explained in
Section 3.1, we manually translated SPARK contracts
into GNAT pragmas, which CodePeer could then un-
derstand. Running CodePeer in special mode on the
resulting code revealed redundant conjuncts in precon-
ditions, that we report here on the SPARK annotations.

enclave.adb:1107:13: warning:
condition is always true

The condition mentioned above has the form A →
((B and C) or not B)), where B and C are previous con-
juncts in the formula. Since the condition mentioned
trivially holds when the previous ones hold, it is use-
less here.

1107 −−# (Admin . p r f r o l e P r e s e n t (TheAdmin) = Typ . Guard
1108 −−# −>
1109 −−# ((Admin . IsDoingOp (TheAdmin) and
1110 −−# Admin . TheCurrentOp (TheAdmin) = Overr ideLock)
1111 −−# or not Admin . IsDoingOp (TheAdmin))) ;

Redundant Conjunct in Postcondition: Running
CodePeer in special mode on the translated an-
notations also revealed redundant conjuncts in
postconditions, that we report here on the SPARK
annotations for clarity:

enclave.adb:1141:13: warning:
condition is always true
enclave.adb:1146:13: warning:
condition is always true

The first condition mentioned has the form
(A and B) → C and the second has the form D
→ ((A and B) or not A), where not A is a previous con-
junct in the formula. Since the conditions mentioned
trivially holds when not A holds, they are useless here.

1141 −−# ((Admin . IsDoingOp (TheAdmin) and
1142 −−# Admin . TheCurrentOp (TheAdmin) = Overr ideLock)
1143 −−# −>
1144 −−# Admin . p r f r o l e P r e s e n t (TheAdmin) = Typ . Guard)
1145 −−# and
1146 −−# (Admin . p r f r o l e P r e s e n t (TheAdmin) = Typ . Guard
1147 −−# −>
1148 −−# ((Admin . IsDoingOp (TheAdmin) and
1149 −−# Admin . TheCurrentOp (TheAdmin) = Overr ideLock)
1150 −−# or not Admin . IsDoingOp (TheAdmin)))

4.3 Defects Found in Ada Code

Access Out of Array Bounds: Running CodePeer in
quick mode revealed a possible access out of an ar-
ray bounds:

tcpip.adb:205:16: medium:
array index check might fail: requires i >= 2

Indeed, the second part of the test below accesses
Msg.Data at index 0 which is outside of the ar-
ray bounds, when the first character in the array is
ASCII.Lf.

204 i f Msg . Data (i) = ASCII . L f and then
205 Msg . Data (i − 1) = ASCII . Cr then

5

Accessing the Null String: Running CodePeer without
partitioning revealed a possible access to the first char-
acter of a null string:

tokenapi.adb:272:16: medium:
array index check might fail

Indeed, MsgProc.GetStringByPos might return a null
string, in which case the access to the first character
of the result on line 272 is an error.

268 HandleStr : S t r i n g := MsgProc . GetStringByPos
269 (Msg => Msg, Arg => 1) ;
270
271 begin
272 i f HandleStr (HandleStr ’ F i r s t) = ’ p ’ then

Uninitialized Variable: Running CodePeer in quick
mode revealed a possible read of an uninitialized
value:

tcpip.adb:427:20: medium:
validity check: Server might be uninitialized

Indeed, local variable Server is read inside an excep-
tion handler that might be reached because an excep-
tion was raised before Server initialization (code not
shown). E.g., this is the case if Create Selector fails.

4.4 Code Quality Issues Found in Ada Code

Useless Assignment: Running the GNAT compiler
with warnings revealed that a local variable was as-
signed but never used.

tcpip.adb:446:07: warning:
variable "Address" is assigned but never read

This warning was not present in the version of the com-
piler used during development of the Tokeneer Project.
This code quality issue is also detected by CodePeer
in quick mode.

5 Results of Code Review

5.1 Defects Found in SPARK Code

AND instead of OR: The first defect found after the
open-source release of the Tokeneer Project was a
functional error. It was found by code review by Profes-
sor Diomidis Spinellis, an expert in security and code
reviews, who reported it on his blog [5].

In the following code from auditlog.adb, the value of
AuditSystemFault is cleared if the deletion is success-
ful, and not set if the deletion fails.

534 F i l e . Delete (TheFi le => TheFi le ,
535 Success => OK) ;
536 Audi tSystemFaul t := Audi tSystemFaul t and not OK;

The problem is that a logical “and” operation was used
instead of an “or” operation. It could be detected by
the SPARK verification tools with precise-enough func-
tional contracts added by a user.

Possible Non-termination: This was detected during
our code review focusing on possible non-termination
of loops. The following loop in enrolment.adb calls the
Ada function File.GetLine to read characters from a
file.

149 while Stop=0 and not F i l e . EndOfFi le (TheFi le) loop
150 −− Read the next (non−empty) l i n e of the f i l e
151 −−# assert PrivateKeyPresent (KeyStore . State) =
152 −−# Pr ivateKeyPresent (KeyStore . State ˜) ;
153 F i l e . GetLine (TheFi le , TheCert , Stop) ;
154 end loop ;

Function GetLine has a catch-all global exception han-
dler, so that if an exception is raised before out-
parameter Stop is increased, Stop remains at 0, and
the loop may never stop.

5.2 Code Quality Issues Found in SPARK Code

Trivially True Conjunct in Loop Invariant: We found
this issue while manually translating SPARK contracts
into GNAT pragmas. A loop invariant SPARK annota-
tion in function OpIsAvailable stipulates that KeyedOp
maintains its value from one run through the loop to
the next run.

115 −−# KeyedOp = KeyedOp%

While this is a correct way to specify that the value of
a variable modified elsewhere in the function does not
change in the loop, it is useless for a constant, which
KeyedOp happens to be in this function.

Redundant Conjunct in Precondition: We found this
issue while reviewing a warning reported by CodePeer
on SPARK contracts.

The code below is part of the precondition of proce-
dure ProgressAdminActivity in enclave.adb. From the
first line in ProgressAdminActivity’s precondition (not
shown here), we know that CurrentAdminActivityPos-
sible holds. Unfolding definitions, we get that

CurrentAdminActivityPossible↔
(AdminHasDeparted or AdminActivityInProgress)

AdminHasDeparted↔
(not AdminToken.IsPresent and
Status in NonQuiescentStates)

AdminActivityInProgress↔
(Status in ActiveEnclaveStates)

6

Putting it all together, Status can be in 5 different
states: WaitingRemoveAdminTokenFail, GotAdminTo-
ken, WaitingStartAdminOp, WaitingFinishAdminOp or
ShutDown.

In particular, Status cannot be in the state EnclaveQui-
escent, so that the first implication below trivially holds.

The second implication below has the form A →
(not B and C) while a previous conjunct in the precon-
dition is equivalent to C→ not B, therefore the second
implication below could be simply rewritten A→ C.

1941 −−# (Status = EnclaveQuiescent −>
1942 −−# not Admin . IsDoingOp (TheAdmin)) and
1943 −−#
1944 −−# (Status = Shutdown −>
1945 −−# (not Admin . IsDoingOp (TheAdmin) and
1946 −−# Admin . p r f r o l e P r e s e n t (TheAdmin) =
1947 −−# PrivTypes . UserOnly))

The same is true for the postcondition, where these
formulas are repeated.

Useless Postcondition: We found this issue while re-
viewing a low warning reported by CodePeer. This
lead us to the following postcondition of procedure
StartOp in admin.ads which requires that a predicate
is maintained by the call to StartOp.

174 −−# post ((Op = Overr ideLock <−>
175 −−# p r f r o l e P r e s e n t (TheAdmin ˜) = Typ . Guard)
176 −−# −>
177 −−# (Op = Overr ideLock <−>
178 −−# p r f r o l e P r e s e n t (TheAdmin) = Typ . Guard))

Looking at the body of StartOp (one line!) immediately
reveals that the state upon which this predicate de-
pends is not modified by calling StartOp, which makes
this postcondition useless.

5.3 Defects Found in Ada Code

Off-by-one Bug: This was detected during our code
review focusing on possible non-termination of loops
in msgproc.adb.

168 −− What we found was not the key − de le te
169 −− every th ing up to t h i s po in t and search again .
170 Ada . S t r i ngs . Fixed . Delete
171 (Source => LocalMsg ,
172 From => 1 ,
173 Through => KeyStar t + Key ’ Length) ;

Here it assumes a quote was found after the string,
which is not guaranteed since we are in the else-
branch of the if-statement testing precisely this. The
value of Through should be instead KeyStart +
Key’Length - 1.

Error Code not Set: This was detected during our
code review focusing on handling of exceptions in
tcpip.adb.

283 Success := True ;
284 . . .
285 −− some code t h a t can ra i se an except ion
286 . . .
287 exception
288 when E : others =>
289 DebugOutput (” Send Er ro r . ”) ;

So procedure SendMsg can return with Success=True
while it got a send error. Similar code in other proce-
dures suggests that Success should be set to False in
the exception handler. Note in particular that the pos-
sibility of an error in SendMsg is correctly taken into
account in its caller SendAndReceive.

Ignoring Exceptions: This was detected during our
code review focusing on handling of exceptions in
file.adb, where PutChar has the following exception
handler:

260 exception
261 when others => nul l ;
262 end PutChar ;

Failures of PutChar will go unnoticed. This is not con-
sistent with the behavior of Copy which calls PutChar
and reports Success or not. One level above in the
call-graph, ArchiveLog has a different behavior when
Copy succeeds or not, so the failure to notify that
PutChar failed is altering the behavior of the applica-
tion.

Ignoring Error Status: This was detected during our
code review focusing on handling of exceptions in
spark io.adb, on the following exception handler:

52 exception
53 when Sta tus E r ro r => Status := S ta tus E r ro r ;
54 when Name Error => Status := Name Error ;
55 when Use Error => Status := Use Error ;
56 when Dev ice Er ror => Status := Dev ice Er ror ;
57 when Storage Er ro r => Status := Storage Er ro r ;
58 when Program Error => Status := Program Error ;
59 end Open ;

This exception handler translates exceptions into an
error status. This is usually bad practice, as this re-
quires all callers of this procedure to check the er-
ror status. In crypto.adb, function ClearStore calls
SPARK IO.Open and discards the status variables so
that a failure will go unnoticed.

5.4 Code Quality Issues Found in Ada Code

Possible Access Out of Array Bounds: This was de-
tected during our code review focusing on possible
non-termination of loops in msgproc.adb.

7

161 −− Found the Key s t r i n g− i s i t enclosed by quotes?
162 i f LocalMsg (KeyStar t − 1) = ’ ’ ’ and
163 LocalMsg (KeyStar t + Key ’ Length) = ’ ’ ’ then

There is no guarantee that KeyStart - 1 and KeyStart
+ Key’Length are within bounds. The catch-all excep-
tion handler in the function correctly returns a default
value in this case, but is certainly not adequate for
high-integrity software to raise a Constraint Error, even
locally.

Dead Subprograms: Procedure Compare and func-
tion Get Name in file.adb are syntactically dead sub-
programs (never called).

Implicit Invariant: This was detected during our code
review focusing on handling of exceptions in cert-
proc.adb.

1078 S i g D i c t S t a r t := Ada . S t r i ngs . Fixed . Index (
1079 S t r i n g (CertData) , S t r i n g (S igD ic t)) ;

If two keys have same dictionary, the call to Index will
return the index of the first dictionary found, not neces-
sarily the one that is associated to the key. Then, the
subsequent call to Delete will fail to delete the proper
entries. Therefore, the functional behavior of the pro-
gram depends here on the implicit invariant that no two
keys share the same dictionary, which is not expressed
anywhere in code or comments.

6 Summary of the Results

#
S

PA
R

K
de

fe
ct

s

#
S

PA
R

K
is

su
es

#
A

da
de

fe
ct

s

#
A

da
is

su
es

#
to

ta
l

(#
ex

cl
us

iv
e)

GNAT 1 1 1 3 (0)
CodePeer 1 4 3 1 9 (6)
SPARK tools 2 2 (1)
static analysis 2 4 3 1 10
hide annotations 0
loops 1 1 1 1 4
exceptions 3 1 4
other 1 2 1 4
code review 2 3 4 3 12
total 4 7 7 4 22

Table 1: Defects and issues found in Tokeneer

Table 1 summarizes our findings. No quantitative con-
clusions should be made based on the figures reported
here:

• Concerning the suitability of this or that approach to
find problems, the code being analyzed had already
been cleared by the GNAT compiler, SPARK Ex-
aminer, and SPARK Simplifier during development,
while this work was the first application of Code-
Peer, SPARK Dead Path Analyzer, and the various
focused code reviews on this code;

• Concerning the comparative density of problems
found in SPARK and Ada, we mostly concentrated
during this work on finding problems in SPARK
code, both when reviewing static analysis results
and when performing our focused code reviews.

The Summary Report for Tokeneer [4] contains de-
tailed quantitative information about the problems
found during the project vs. point of introduction.

In Table 1, the number of defects (or issues) for each
column found by static analysis may be less than the
sum of the problems found by individual tools, as the
same problem may have been found by more than one
tool. For each tool used, we detail in parentheses the
total number of problems that this tool is the only one
to discover. In the following, we draw qualitative con-
clusions based on these figures and additional infor-
mation reported in Sections 4 and 5.

The fact that 4 defects were found in SPARK code, de-
spite considerable efforts spent in the assurance pro-
cess during the Tokeneer Project, is a clear indication
that use of formal verification does not guarantee that
the system built will be free from defects. Looking at
the defects found, only one is a run-time error (possi-
ble integer overflow) and it was found with a new ver-
sion of the SPARK tools. The possible non-termination
clearly points to a “blind spot” of the SPARK verifica-
tions, which can be addressed on the user side by an-
notating possibly non-terminating loops with loop vari-
ants (currently encoded as loop invariants). A way to
express loop variants in SPARK annotations would cer-
tainly be a much better solution here. The last two
defects found in SPARK are functional errors, which
would be detected automatically if the code contained
enough functional annotations expressed as SPARK
contracts. Here, the limiting factor is the cost/benefit
ratio of adding such annotations, which lead to the de-
cision to only develop security annotations in the To-
keneer Project. Interestingly, one of these functional
errors (wrong variable used) is now found by all the
tools as a side-effect of checking for conditions always
true.

In comparison, the defects found in Ada code are much
more serious. The defects found by static analysis are
all serious run-time errors: access out of array bounds,
accessing the null string, uninitialized variable. The de-
fects found by code review are all serious functional er-
ror: off-by-one bug, error code not set, ignoring excep-
tions, ignoring error status. Most of these defects can-

8

not be present in SPARK code by construction, as they
will be caught by either SPARK Examiner or SPARK
Simplifier. This is a clear indication that use of formal
verification does guarantee that the system built will be
free from a large set of serious defects.

Most of the code quality issues found in SPARK code
have to do with lack of coverage in code (dead code)
or in annotations (redundant annotations). Even if
static analysis and code review uncovered a number
of these, this is an area where dynamic coverage anal-
ysis is needed to guarantee some degree of coverage.
E.g., dead code would be found by doing structural
coverage and redundant annotations by doing decision
coverage or MC/DC coverage. This would have caught
also the dead subprograms found in Ada.

It is interesting to note that one code quality issue
(global used instead of proxy) could have been de-
tected by running the compiler with the appropriate
warning switch. This is another example that tool setup
and configuration is as critical as tool choice. Tool
configuration needs to be reviewed, configured, and
fault-managed even more thoroughly than code, as
this one review (of the tool configuration - e.g., com-
piler switches) may very efficiently replace a much big-
ger code review effort.

A crucial point is that most of the time spent in these
experiments, both for static analysis and code review,
was some kind of manual review: review of the tools
output for static analysis, review of the code itself for
code review. An equally crucial point is that tool sup-
port for these reviews was very important. The ability
to search and navigate the semantic structures of the
code in an IDE allows the user to focus on understand-
ing the warnings and the code itself, without getting
distracted by the details of repeatedly finding appropri-
ate source files or the elements in the source files.

As expected, most time spent during the review of
static analysis results consisted in identifying true
problems from false alarms. An interesting point not
widely recognized is that code reviews also produce
false alarms: we spent much more time on two false
alarms produced this way than on any false alarm pro-
duced by static analysis tools. In the first case, we
thought a Prolog user-defined rule for SPARK Sim-
plifier was wrong, while it was not; in the second
case, we wrongly identified dead code by mistaking
File.EndOfLine(TheFile) for File.EndOfFile(TheFile).

As we focused mostly on the SPARK code, we did not
make much use of the contracts generated by Code-
Peer, which make explicit the otherwise implicit inputs,
outputs, preconditions and postconditions of subpro-
grams. Had we focused more on Ada code, we would
certainly have relied more on the contracts generated
by CodePeer.

7 Associating Static and Dynamic Analyses

Considering more broadly the industrial practice in ver-
ifying properties of software, it is currently mostly sup-
ported by applying a process of development (includ-
ing coding rules and code review) and by dynamic
analyses (including testing and coverage analysis). In
parallel, static analysis techniques for the sake of find-
ing problems have reached a degree of industrializa-
tion which allows their use on very large systems.
These techniques generate warnings but in general
they give no guarantees (although CodePeer does so)
and the treatment of false alarms requires a costly ex-
pertise (which is why we ignored low warnings from
CodePeer in our experiments). Only a few industries
have turned to static analysis for the sake of formal
verification [8], using e.g., SPARK.

We propose to associate static analyses and dynamic
analyses with the aim to achieve better software ver-
ification. The goal of this association is both to com-
plete the formal verification efforts with different static
analyses (like CodePeer) and dynamic analyses, and
to popularize formal verification for those who already
use code reviews, testing or static analysis.

To that end, we propose to base all analyses on the
code itself, thanks to the extensions of the Ada lan-
guage with contracts proposed by the Ada Rapporteur
Group for the next version of Ada, Ada 2012. For ex-
ample, we would express the contract of function Sqrt
which computes the square root of its argument as fol-
lows:

function Sqr t (X : I n tege r) return I n t ege r
with

pre => X >= 0 ,
post => Sqrt ’ Resul t ∗ Sqrt ’ Resul t <= X and

X < (Sqrt ’ Resul t + 1) ∗ (Sqrt ’ Resul t + 1) ,
test => i f X = 10 then Sqrt ’ Resul t = 3 ;

Notice in particular the expression of a test case in the
contract of Sqrt.

Annotations give us the possibility to group together
the specification, the tests and the code in the same
place, which solves by construction the problem of
traceability between these artifacts of the development
process. Tests will allow annotations to be easily tuned
by execution and debugging. Some static analyzers
may generate annotations in order to facilitate formal
verification, much like CodePeer already generates
subprogram contracts to facilitate code review.

Our goal is to provide “lite” tools and methods for the
development of high integrity applications, that devel-
opers may apply to ongoing implementations on their
computers to verify some safety properties and logic
properties. Long after the first version of the popu-
lar software Lint (1977) to find programming errors in
C programs, we propose to build a High-Integrity Lint.

9

Together with our focus on testing and execution, this
gives the name of our project: Hi-Lite for High-Integrity
Lint Integrated with Testing and Execution. All tools in
this platform will be free software. Sources for all new
tools will be available through the Open-DO initiative
(http://www.open-do.org/).

8 Conclusion

In the introduction, we listed several different reasons
for a formally verified system to contain problems. In
this paper, we provide empirical evidence that such
problems show up in practice: the presence of code
that is not verified formally; the imprecision of user
specifications; the inability of formal verification tech-
niques to target some properties. In Section 2 we pre-
sented the Tokeneer Project, which was formally veri-
fied to the higher assurance levels of the Common Cri-
teria. In Section 6, we discussed 11 defects and 11
code quality issues found in both SPARK (formally ver-
ified) and Ada (not formally verified) source code of the
Tokeneer Project. Only two of these were discovered
before this work. All other defects and code quality is-
sues were found in 3 days of work by the application of
static analysis tools and code review.

In related work [7], Woodcock and Aydal have found
security errors in the specification of the Tokeneer
Project. They translated the Z specification into Al-
loy notation and analyzed it using the Alloy analyzer, a
bounded model checker based on SAT solving. They
discovered 12 mild but actual problems, of which they
give a detailed account for 4 of them.

The results of both studies indicate that formal devel-
opments would benefit from being integrated in a larger
tooled approach. The number of problems highlighted
should not cast any doubt on the fact that this num-
ber was not much larger only because the Tokeneer
Project was developed using formal methods. It is a
remarkable achievement that this complete redevelop-
ment of an actual system by 3 people over 9 months
(part-time) achieved such a level of quality that only a
few problems can be found several years later using so
many new approaches not available at the time.

In order to complete formal verification efforts, we pro-
pose to associate static analyses with dynamic anal-
yses in a new project called Hi-Lite. Hi-Lite’s goal
is to promote the use of formal methods in develop-
ing high-integrity software. It loosely integrates formal
proofs with testing and static analysis, thus allowing
developers to combine different techniques around a
common expression of properties and constraints. Hi-
Lite’s focus on modularity allows a divide-and-conquer
approach to large software systems and encourages
early adoption by all programmers.

9 Acknowledgment

We are grateful to Rod Chapman and Diomidis Spinel-
lis who inspired this work by finding the first two prob-
lems on Tokeneer by static analysis and code review,
and to Arnaud Charlet who found more problems by
running CodePeer for the first time on Tokeneer’s code.
We would also like to thank Neil White for his useful re-
marks on the manuscript.

10 References

[1] Janet Barnes, Rod Chapman, Randy Johnson,
James Widmaier, David Cooper, and Bill Everett.
Engineering the Tokeneer enclave protection soft-
ware. In 1st IEEE International Symposium on Se-
cure Software Engineering, March 2006.

[2] Anthony Hall and Roderick Chapman. Correctness
by construction: Developing a commercial secure
system. IEEE Software, 19(1):18–25, 2002.

[3] ISO/IEC Standard 15408. Common Criteria for In-
formation Technology Security Evaluation, version
2.1 edition, August 1999.

[4] NSA and Praxis High Integrity Systems.
EAL5 demonstrator: Summary report, August
2008. http://www.adacore.com/multimedia/
tokeneer/Tokeneer_Report.pdf.

[5] Diomidis Spinellis. A look at zero-defect code.
Personal blog, 2008. http://www.spinellis.gr/
blog/20081018/index.html.

[6] http://libre.adacore.com/home/products/
sparkpro/tokeneer/downloads/.

[7] Jim Woodcock and Emine Gökçe Aydal. A token
experiment. Festschrifts in Computer Science, the
BCS FAC Series, Festschrift for Tony Hoare, 2009.

[8] Jim Woodcock, Peter Gorm Larsen, Juan Bicar-
regui, and John Fitzgerald. Formal methods: Prac-
tice and experience. ACM Comput. Surv., 41(4):1–
36, 2009.

11 Glossary

Hi-Lite: High-Integrity Lint Integrated with Testing
and Execution

IDE: Integrated Development Environment
kloc: thousand lines of code
MC/DC: Modified Condition / Decision Coverage
NSA: National Security Agency
POGS: Proof ObliGation Summarizer
VC: Verification Condition

10

